A Highly Efficient Hybrid GaAs Solar Cell Based on Colloidal-Quantum-Dot-Sensitization
نویسندگان
چکیده
This paper presents a hybrid design, featuring a traditional GaAs-based solar cell combined with various colloidal quantum dots. This hybrid design effectively boosts photon harvesting at long wavelengths while enhancing the collection of photogenerated carriers in the ultraviolet region. The merits of using highly efficient semiconductor solar cells and colloidal quantum dots were seamlessly combined to increase overall power conversion efficiency. Several photovoltaic parameters, including short-circuit current density, open circuit voltage, and external quantum efficiency, were measured and analyzed to investigate the performance of this hybrid device. Offering antireflective features at long wavelengths and luminescent downshifting for high-energy photons, the quantum dots effectively enhanced overall power conversion efficiency by as high as 24.65% compared with traditional GaAs-based devices. The evolution of weighted reflectance as a function of the dilution factor of QDs was investigated. Further analysis of the quantum efficiency response showed that the luminescent downshifting effect can be as much as 6.6% of the entire enhancement of photogenerated current.
منابع مشابه
SILAR Sensitization as an Effective Method for Making Efficient Quantum Dot Sensitized Solar Cells
CdSe quantum dots were in situ deposited on various structures of TiO2 photoanode by successive ionic layer adsorption and reaction (SILAR). Various sensitized TiO2 structures were integrated as a photoanode in order to make quantum dot sensitized solar cells. High power conversion efficiency was obtained; 2.89 % (Voc=524 mV, Jsc=9.78 mA/cm2, FF=0.56) for the cells that sensitized by SILAR meth...
متن کاملEffect of PbS Film Thickness on the Performance of Colloidal Quantum Dot Solar Cells
Colloidal quantum dots offer broad tuning of semiconductor band structure via the quantum size effect. In this paper, we present a detailed investigation on the influence of the thickness of colloidal lead sulfide (PbS) nanocrystals (active layer) to the photovoltaic performance of colloidal quantum dot solar cells. The PbS nanocrystals (QDs) were synthesized in a non-coordinating solvent, 1-oc...
متن کاملIntroducing nanostructure patterns for performance enhancement in PbS colloidal quantum dot solar cells
With attention to the thin film structure of colloidal quantum dot solar cells, in this paper in order to improvement of active layer absorption of them, we have proposed the use of nanostructure pattern for enhancement of their performance. For this purpose we have presented suitable nano hemisphare patterns in colloidal quantum dot solar cells for light trapping in absorption layer. Then with...
متن کاملPositron annihilation studies of the AlOx/SiO2/Si interface in solar cell structures
Related Articles Overcoming the bandgap limitation on solar cell materials Appl. Phys. Lett. 100, 083901 (2012) Energy transfer in CaYAlO4: Ce3+, Pr3+ for sensitization of quantum-cutting with the Pr3+-Yb3+ couple J. Appl. Phys. 111, 043104 (2012) GaAs/GaInNAs quantum well and superlattice solar cell Appl. Phys. Lett. 100, 073508 (2012) Understanding the operation of quantum dot intermediate ba...
متن کاملPhotovoltaic Performance of a Nanowire/Quantum Dot Hybrid Nanostructure Array Solar Cell
An innovative solar cell based on a nanowire/quantum dot hybrid nanostructure array is designed and analyzed. By growing multilayer InAs quantum dots on the sidewalls of GaAs nanowires, not only the absorption spectrum of GaAs nanowires is extended by quantum dots but also the light absorption of quantum dots is dramatically enhanced due to the light-trapping effect of the nanowire array. By in...
متن کامل